Hydrothermal Liquefaction of Bacteria and Yeast Monocultures

نویسندگان

  • Peter J. Valdez
  • Michael C. Nelson
  • Julia L. Faeth
  • Henry Y. Wang
  • Xiaoxia Nina Lin
  • Phillip E. Savage
چکیده

We hydrothermally treated monocultures of Escherichia coli, Pseudomonas putida, Bacillus subtilis, and Saccharomyces cerevisiae at isothermal (350 °C for 60 min) and fast (rapid heating for 1 min) liquefaction conditions. Fast hydrothermal liquefaction (HTL) of P. putida and S. cerevisiae produced the highest biocrude yields of 47 ± 13 and 48 ± 9 wt %, respectively. Biocrudes generated via fast HTL were always richer in O and N and had a higher yield of hexane-insoluble products. Isothermal HTL of all microorganisms always produced an aqueous phase richer in NH3 than the aqueous phase from fast HTL. Up to 62 ± 9% of the chemical energy in the biomass could be recovered in the biocrude product fraction. These results demonstrate the feasibility of applying HTL to produce high yields of biocrude from bacteria and yeast that are high in protein [>80 wt %, dry and ash-free basis (daf)] and low in lipids (<3 wt %, daf). Such microorganisms could serve as a renewable feedstock for biofuels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algal polycultures enhance coproduct recycling from hydrothermal liquefaction.

The aim of this study was to determine if polycultures of algae could enhance tolerance to aqueous-phase coproduct (ACP) from hydrothermal liquefaction (HTL) of algal biomass to produce biocrude. The growth of algal monocultures and polycultures was characterized across a range ACP concentrations and sources. All of the monocultures were either killed or inhibited by 2% ACP, but polycultures of...

متن کامل

Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction

BACKGROUND Oleaginous microorganisms are attractive feedstock for production of liquid biofuels. Direct hydrothermal liquefaction (HTL) is an efficient route that converts whole, wet biomass into an energy-dense liquid fuel precursor, called 'biocrude'. HTL represents a promising alternative to conventional lipid extraction methods as it does not require a dry feedstock or additional steps for ...

متن کامل

Hydrothermal Liquefaction of Food Waste and Model Food Waste Compounds

Solid waste is generated at a rate of more than 4 lb per person per day. A significant portion of the non-recyclable waste is food waste, with high water content and low energy density. While most thermochemical conversion processes require a relatively dry feedstock, hydrothermal liquefaction uses subcritical water as the reaction medium and is therefore compatible with high-moisture feedstock...

متن کامل

Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst

Hydrothermal liquefaction (HTL) of microalgae Nannochloropsis (NAS) over various transition metal M/TiO2 (M = Fe, Co, Ni, Mo, and Mn) was investigated. Ni/TiO2 was the most effective catalyst to improve the yield and quality of biocrude and the liquefaction conversion. Ni/TiO2 was characterized by XRD, XRF, and XPS. The research of Effect of reaction temperature on HTL of NAS over Ni/TiO2 sugge...

متن کامل

Characterizing Semivolatile Organic Compounds of Biocrude from Hydrothermal Liquefaction of Biomass

Hydrothermal liquefaction of biomass produces a complex biocrude, which can be further upgraded to biofuel or chemicals, but there is a need for improved molecular understanding of product composition and reaction pathways. This study extensively characterizes semivolatile compounds in biocrudes from hydrothermal liquefaction (HTL) of microalgae (N. gaditana, C. vulgaris), macroalgae (L. hyperb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014